

46 Digital Fundamentals

detected, the last bit is found by knowing that there are eight bits in a byte. During periods of inactiv-
ity, an idle communications interface is indicated by a persistent logic 0. When the transmitter is
given a byte to send, it first drives a logic-1 start bit and then sends eight data bits. Each bit is sent in
its own clock cycle. Therefore, nine clock cycles are required to transfer each byte. The serial inter-
face is composed of two signals,

clock

and

serial data

, and functions as shown in Fig. 2.14.
The eight data bits are sent from least-significant bit, bit 0, to most-significant bit, bit 7, following

the start bit. Following the transmission of bit 7, it is possible to immediately begin a new byte by in-
serting a new start bit. This timing diagram does not show a new start bit directly following bit 7.
The corresponding output of the receiver is shown in Fig. 2.15. Here,

data out

is the eight-bit quan-

A

B

C

LED

GND
7

4Y
8

1A
1

1Y
2

3
2A

4
2Y

VCC

6A

6Y

5A

14

13

12

11

7404
U1

3A
5

5Y
10

3Y
6

4A
9

GND
7

3Y
8

1A
1

1B
2

3
2A

4
2B

VCC

1C

1Y

3C

14

13

12

11

7411
U2

2C
5

3B
10

2Y
6

3A
9

GND
7

3Y
8

1A
1

1B
2

3
1Y

4
2A

VCC

4B

4A

4Y

14

13

12

11

7432
U3

2B
5

3B
10

2Y
6

3A
9

+5V +5V

+5V

FIGURE 2.13 LED driver logic using 74111 with fewer ICs.

D7D6D5D4D3D2D1D0

FIGURE 2.14 Serial interface bit timing.

Clock
Data
Out

Data

Ready

x Data x

FIGURE 2.15 Serial receive output timing.

-Balch.book Page 46 Thursday, May 15, 2003 3:46 PM

Integrated Circuits and the 7400 Logic Families 47

tity that has been reconstructed from the serialized bit stream of Fig. 2.14.

Ready

indicates when
data out is valid and is active-high.

All that is required of this receiver is to assemble the eight data bits in their proper order and then
generate a

ready

signal. This ready signal lasts only one cycle, and any downstream logic waiting for
the newly arrived byte must process it immediately. In a real system, a register might exist to capture
the received byte when ready goes active. This register would then pass the byte to the appropriate
destination. This output timing shows two bytes transmitted back to back. They are separated by
nine cycles, because each byte requires an additional start bit for framing.

In contemplating the design of the receive portion of the serial controller, the need for a serial-in/
parallel-out shift register becomes apparent to assemble the individual bits into a whole byte. Addi-
tionally, some control logic is necessary to recognize the start bit, wait eight clocks to assemble the
incoming byte, and then generate a ready signal. This receiver has two basic states, or modes, of op-
eration: idle and receiving. When idling, no start bit has yet been detected, so there is no useful work
to be done. When receiving, a start bit has been observed, incoming bits are shifted into the shift reg-
ister, and then a ready signal is generated. As soon as the ready signal is generated, the receiver state
may return to idle or remain in receiving if a new start bit is detected. Because there are two basic
control logic states, the state can be stored in a single flip-flop, forming a two-state

finite state ma-
chine

(FSM). An FSM is formed by one or more

state flops

with accompanying logic to generate a
new state for the next clock cycle based on the current cycle’s state. The state is represented by the
combined value of the state flops. An FSM with two state flops can represent four unique states.
Each state can represent a particular step in an algorithm. The accompanying

state logic

 controls the
FSM by determining when it is time to transition to a new piece of the algorithm—a new state.

In the serial receive state machine, transitioning from idle to receiving can be done according to
the serial data input, which is 0 when inactive and 1 when indicating a start bit. Transitioning back to
idle must somehow be done nine cycles later. A counter could be used but would require some logic
to sense a particular count value. Instead, a second shift register can be used to delay the start bit by
nine cycles. When the start bit emerges from the last output bit in the shift register, the state machine
can return to the idle state. Consider the logic in Fig. 2.16. The arrow-shaped boxes indicate connec-
tion points, or ports, of the circuit.

Under an idle condition, the input to the shift register is zero until the start bit appears at the data
input,

din

. Nine cycles later, the ready bit emerges from the shift register. As soon as the start bit is
observed, the state machine transitions to the receiving state, changing the

idle

input to 0, effectively
masking further input to the shift register. This masking prevents nonzero data bits from entering the

ready

delay logic and causing false results.
Delaying the start bit by nine cycles solves one problem but creates another. The transition of the

state machine back to idle is triggered by the emergence of

ready

from the shift register. Therefore,
this transition will actually occur

ten

cycles after the start bit, because the state flop, like all D flip-
flops, requires a single cycle of latency to propagate its input to its output. This additional cycle will
prevent the control logic from detecting a new start bit immediately following the last data bit of the
byte currently in progress. A solution is to design

ready

with its nine-cycle delay and

ready_next

with an eight-cycle delay by tapping off one stage earlier in the shift register. In doing so, the state

Ready
Din

Idle

Ready Delay Shift Register

FIGURE 2.16 Serial receive ready delay.

-Balch.book Page 47 Thursday, May 15, 2003 3:46 PM

